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Abstract
We have studied the entanglement of identical fermions in two spatial regions
in terms of the Berry phase acquired by their spins. The analysis is done
from the viewpoint of the geometrical interpretation of entanglement, where a
fermion is visualized as a scalar particle attached to a magnetic flux quantum.
The quantification of spin entanglement in terms of their Berry phases is novel
and generalizes the relationship between the entanglement of distinguishable
spins and that of delocalized fermions.

PACS numbers: 03.65.Ud, 03.65.Vf

1. Introduction

Quantum entanglement is a specific feature which distinguishes between the classical and
quantum world. The role of entanglement is also important in different branches of quantum
information science such as quantum communication [1], quantum computation [2], quantum
cryptography [3] and quantum teleportation [4]. Entanglement for two distinguishable qubits
has been well studied and a measure of the degree of entanglement can be quantified in terms
of von Neuman entropy and concurrence [5–8]. However, entanglement of two identical
fermions has not yet been well understood. In systems of identical fermions, a proper measure
of entanglement should take into account multiple occupancy of states [9–13], the effect of
exchange [14] and mutual repulsion. Recently, Ramsak et al [15] have considered the problem
and formulated several expressions for the concurrence of two indistinguishable delocalized
spin-1/2 particles. In a recent paper [16], it has been pointed out that the concurrence for
the entanglement of two distinguishable spins can be formulated in terms of the Berry phase
acquired by the spins when each spin is rotated about the quantization axis (z-axis). In
fact, when a spinor is visualized as a scalar particle attached to a magnetic flux, quantum
entanglement of spin systems is caused by the deviation of the internal magnetic flux line
associated with one particle in the presence of the other. This helps us to consider the measure
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of entanglement namely concurrence, in terms of the Berry phase acquired by the rotation of
the spin around the z-axis induced by the internal magnetic field of the other particle. This
picture is potentially useful to study the entanglement of identical fermions in two spatial
regions in terms of the Berry phase acquired by their spins. Indeed in this formalism, the spin
entanglement through magnetic coupling is associated with the spatial entanglement between
fermions at different spatial regions and entanglement can be viewed as a consequence of
Fermi statistics [14]. Therefore, just like in distinguishable spin systems, the concurrence
associated with the entanglement of identical fermions in different spatial regions can also
be expressed in terms of the geometrical phase. The phase is acquired by the spin of one
particle in one spatial region, when it moves around the z-axis in the presence of the other
particle, in another spatial region. In the present paper, we shall study the entanglement of
two delocalized electrons in two spatial regions from this viewpoint.

2. Concurrence and Berry phase

For an entangled state, the Berry phase acquired by a spin may be analysed by considering
that, under the influence of the internal magnetic field associated with the other electron, the
spin of an electron rotates adiabatically with an angular velocity ω0 around the z-axis under
an angle θ .

The instantaneous eigenstates of a spin operator in the direction n(θ, t) where n is the
unit vector depicting the magnetic field B(t) = Bn(θ, t) in the σz-basis are given by

|↑n; t〉 = cos
θ

2
|↑z〉 + sin

θ

2
eiω0t |↓z〉

|↓n; t〉 = sin
θ

2
|↑z〉 + cos

θ

2
eiω0t |↓z〉.

(1)

After cyclic evolution for the interval τ = 2π
ω0

each eigenstate will pick up a geometric
phase (Berry phase) apart from the dynamical phase [17]

�B∓ = π(1 ∓ cos θ) (2)

where �B−(�B+) corresponds to up (down) state. The angle θ represents the deviation of the
spin from the quantization axis (z-axis) under the influence of the magnetic field.

The evaluation of the concurrence in terms of the Berry phase follows from the following
consideration. For the Bell state

|ψ〉 = a|↑↓〉 − b|↓↑〉 (3)

where a and b are complex coefficients, the concurrence is given by

C = 2|a||b|. (4)

In this formalism, as entanglement is considered to be caused by the deviation of the
magnetic flux line from the quantization axis in the presence of the other particle, we may take
|a| and |b| as functions of this angle of deviation θ and thus we write

1√
2

(|a|
|b|

)
=

(
f (θ)

g(θ)

)
. (5)

The angle θ here just corresponds to the deviation of up (down) spin under the influence of
the other and thus represents the same angle θ associated with the Berry phase acquired by
the spin as given by equation (2). For the maximum entangled state (MES), we have θ = π

as it corresponds to the maximum deviation of a spin from the z-axis when the spin direction
is reversed. For this state, we have |a| = |b| = 1√

2
and C = 1.
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Again for the disentangled state θ = 0 and we have C = 0.
These constraints satisfy

f (θ)|θ=π = g(θ)|θ=π = 1
2 (6)

and,

either f (θ)|θ=0 = 0 or g(θ)|θ=0 = 0. (7)

From these constraint equations, for the positive definite norms 0 � |a| � 1 and 0 � |b| � 1,
we can have a general solution

1√
2

(|a|
|b|

)
=

(
f (θ)

g(θ)

)
=

(
cos2 nθ

4
sin2 nθ

4

)
(8)

with n being an odd integer. It is noted that according to equation (8) the relation |a|2 +|b|2 = 1
is satisfied only in the case of θ = π implying the MES. So to have the probability interpretation
the generalized state may be defined by incorporating the normalization factor 1√

|a|2+|b|2 in

equation (3). The Berry phase corresponds to the half of the solid angle 1
2� swept out by the

magnetic flux line and is given by π(1 − cos θ). The system under consideration suggests that
the range of θ lies between 0 � |θ | � π where θ = π corresponds to the maximum deviation
of the spin when the spin direction is reversed. So in expression (8) we should take n = 1 for
our present system. We find that the particular solution with n = 1 relates the concurrence to
the Berry phase and is given by

C = 2|a||b| = sin2 θ

2
= 1

2
(1 − cos θ) = |φB |

2π
. (9)

We may remark here that the concurrence (as it is a measure of entanglement) is a function
of an instantaneous state, whereas the Berry phase is related to the periodic rotation of the
system. The relationship between these two entities in the present framework follows from
physical aspects. Here, entanglement is caused by the deviation of the magnetic flux line
associated with one fermion in the presence of the other and the Berry phase of an entangled
spin system is related to this deviation. This is the novelty of studying spin entanglement from
Berry phase approach.

3. Spin entanglement of two delocalized fermions

In our framework, we consider two electrons in two different spatial regions A and B.
Entanglement is produced when two initially unentangled (separated) electrons in wave packets
approach each other, interact and then again become well separated into distinct regions A and
B. The spin properties of such a fermionic system can be realized in spin correlation functions
for the two domains. In fact, the spin measuring apparatus could measure spin correlation
functions for the two domains A and B rather than two distinguishable spins. We may consider
spin entanglement of two-electron states on a lattice of the form

|ψ〉 =
N∑

i,j=1

1

2

[
ψ

↑↓
ij c

†
i↑c

†
j↓ + ψ

↓↑
ij c

†
i↓c

†
j↑

]|0〉 (10)

where c
†
is creates an electron with spin s on site i and N is the total number of sites. Here

ψ
↑↓
ij

(
ψ

↓↑
ij

)
is the amplitude of probability to find the two-electron state with one having spin

↑ in region A and another with spin ↓ in region B. The whole set of probabilities gives the
wavefunction for the two-electron system in the continuum limit.
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The system is relevant in representing a tight binding lattice containing two valence
electrons occupying two non-degenerate atomic orbitals or two electrons in the conduction
band of a semiconductor for which the site represents finite grid points.

To study the concurrence associated with the entanglement of such a system in terms of
the geometric phase acquired by the spin of one electron in the presence of the other electron,
we consider a rotation of the spin around the z-axis under an angle θ at each site

ψ
↑↓
ij → ψ

↑↓
ij e2iθ (11)

when the angle θ varies from 0 to π . The Berry phase acquired by the spin may be realized
through the expression

�B = −i
∫ π

0
〈ψ |∂θψ〉 dθ (12)

which on the lattice takes the form

�B = 2π2
∑
i,j

ψ
↑↓∗
ij ψ

↑↓
ji . (13)

This follows from the differentiation of expression (11) with respect to θ and replacing the
integration in the continuum case by the summation on the lattice. The relationship between
concurrence and the Berry phase can be generalized for the system of two indistinguishable
particles and from equations (9) and (13) we can write

C = |�B |
2π

= 2
∑
i,j

ψ
↑↓∗
ij ψ

↑↓
ji . (14)

This may be identified with the formula obtained by Ramsak et al [15] for the entanglement
of the two electron states on a lattice (given by equation (10)). The concurrence of the system
can be expressed in terms of the operators

S+
A(B) = (

S−
A(B)

)† =
∑

i∈A(B)

c
†
i↑ci↓ (15)

and for the state with SZ
tot = 0, we have

C = 2
∣∣〈S+

AS−
B

〉∣∣ = 2
∑
i,j

ψ
↑↓∗
ij ψ

↑↓
ji . (16)

Indeed, this can be formulated in a more familiar form by considering the state in analogy to
the Bell state

�±
ij = 1√

2

(
ψ

↑↓
ij ± ψ

↑↓
ji

)
(17)

over all pairs [ij ] such that i ∈ A and j ∈ B. The expression for concurrence of the system is
given by [15]

C =
∑
[ij ]

∣∣[(�+
ij

)2 − (
�−

ij

)2]∣∣ (18)

which is equivalent to expression (16). From our analysis we note that this result is identical
with expression (14) obtained from the relationship of Berry phase with concurrence.
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4. Entanglement of two delocalized electrons in the Hubbard model

As the study of generation of entanglement in the solid-state environment is an active field
of research in recent times, for an application for our formalism we have picked up the
well-studied Hubbard model [18].

To compute the concurrence for the entanglement of two electrons in two different spatial
regions in the Hubbard model, let us consider two interacting electrons in a one-dimensional
lattice with N → ∞. The corresponding Hamiltonian is

H = −t
∑
ij

(
c
†
iscjs + h.c.

)
+

∑
i,j,s,s ′

Ui‘j nisnjs ′ (19)

where t is the hopping parameter, U represents the onsite repulsion and nis is the number of
electrons at the site i with spin s. Let the situation be such, that one electron with spin ↑
is initially confined in the region A and the other electron with opposite spin ↓ in region B.
The initial state is defined by two wave packets, the left with momentum k and the right with
momentum −q. After collision, the electrons move apart with non-spinflip amplitude tkq and
spin flip amplitude rkq . For sharp momentum resolutions we take k = −q = k0. We would
like to study the entanglement of these two electrons in terms of the Berry phase acquired by
the spins in this system. We know that for strong coupling and at half filling, the system with
Hamiltonian (19) reduces to the Heisenberg antiferromagnetic chain and the Hamiltonain is
given by

H = J
∑ [

Sx
i Sx

j + S
y

i S
y

j + Sz
i S

z
j

]
(20)

with J = 4t2/U . In the S = 0 sector( S = total spin), the rotational symmetry of the
Hamiltonian implies〈

Sx
i Sx

j

〉 = 〈
S

y

i S
y

j

〉 = 〈
Sz

i S
z
j

〉
. (21)

In the antiferromagnetic chain for spin-1/2 system,〈
Sz

i S
z
i

〉
� 1

4 . (22)

If θ be the deviation of the spin at the site i from the quantization axis i.e. z-axis under the
influence of the spin at the site j then we can write〈

Sz
i S

z
j

〉 = 1
4 cos θ. (23)

We consider collision of the two electrons initially at regions A and B. After the collision the
electrons move to the final states in these two regions either with spin flip or non-spin flip
configurations. The Berry phase acquired by the up (down) configuration is given by

�B−(�B+) = π(1 − cos θ)(π(1 + cos θ)).

However after the collision, the initial spin positions get changed so that for spin flip and spin
nonflip cases we have the two phases

�B = π(1 − cos θ)|θ=π and �B = π(1 + cos θ)|θ=0 (24)

respectively.
The generalized expression for the Berry phase is

�B = π(1 + |cos θ)|). (25)

When the spin flip and spin nonflip amplitudes coincide the concurrence is given by

C = |�B |
2π

= 1

2
(1 + |cos θ)|)|θ=0,π = 1. (26)
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Our result is identical with another definition of concurrence [15]

C = 2|tkqrkq | = 1 (27)

when the spin flip and spin nonflip amplitude coincides i.e. tkq = rkq This corresponds to
k0 ∼ 0, π . However, when the spin flip and non-spin-flip amplitudes do not coincide i.e.
tkq = rkq , we can measure the concurrence from an estimate of the angle θ in terms of
momentum k0(k = −q = k0). This can be achieved from an analysis of the energy relations
in the Hubbard model and Heisenberg antiferromagentic chain in the ground state with site
i ∈ A, j ∈ B . In the Hubbard model, when no particles meet at a lattice point, the many
particle energy is given by

E = −2t
∑

i

cos ki. (28)

In the Heisenberg antiferromagnetic chain with the correlation given by equation (23), the
energy per site is given by

E = J 3
4 cos θ. (29)

Since in the Hubbard model, the occupation number of each species of spin 〈niα〉 = 1
2 , we

find that with J = 4t2

U
, the energy of one particle can be related to the energy per site in the

antiferromagnetic chain by the relation

t cos k0 = 4t2

U

3

4
cos θ. (30)

For t = U , we find

cos θ = 1
3 cos k0. (31)

So the concurrence for different values of k0 at t = U can be obtained in terms of the Berry
phase acquired by the spin through the relation

C = 1
2 (1 + |cos θ |)θ =0,π = 1

2

(
1 + 1

3 |cos k0|
)
k0 =0,π

. (32)

From this, we can have a numerical estimate of concurrence for different values of k0.
In fact, we find for k0 = π/4, π/2, 3π/4, C = 0.62, 0.5, 0.62, respectively. Again, from
equation (26) we note that for k0 = 0, π we get C = 1. It is found that the results are
in good agreement with the values of concurrence obtained by Ramsak et al [15] from an
analysis of the spin flip and nonflip amplitudes of two-electron interaction for wavepackets
with well-defined momentum.

5. Summary and conclusion

To summarize, the present analysis shows that the spin entanglement of two identical fermions
at two different spatial regions can be described by the Berry phase acquired by the spins
in the two domains. We have considered two identical fermions, localized in two different
spatial regions whose spins interact through magnetic coupling. As the study of entanglement
in the solid-state environment is important, to substantiate our derivation, we have considered
two electrons in two different spatial regions in the Hubbard model. We have derived the
concurrence for their spin entanglement in terms of the Berry phase acquired by their spins.
We have found that the results obtained in our method (value of the concurrence in the Hubbard
model) are in good agreement with the existing results in the literature [15].

We may conclude by mentioning that it is difficult [19–23] to have any directly measurable
observable which corresponds to entanglement of a given arbitrary quantum state. In this
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novel approach, the value of concurrence, which is a degree of measure to quantify spin
entanglement of two fermions, can be estimated by the observed Berry phase acquired by
their spins. Furthermore, as we have already shown that the concurrence for the entanglement
of distinguishable spins in a spin system can be related to the Berry phase acquired by their
spins [16], the present approach generalizes the relationship between entanglement of two
distinguishable and indistinguishable fermions.
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